Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.08.22270685

ABSTRACT

Background: Upper respiratory samples for SARS-CoV-2 detection include the gold standard nasopharyngeal (NP) swab, and mid-turbinate (MT) nasal swabs, oropharyngeal (OP) swabs, and saliva. Following the emergence of the omicron (B.1.1.529) variant, limited preliminary data suggest that saliva may be more sensitive than nasal swab, highlighting the need to understand differences in viral load across different sites. Methods: MT, OP, and saliva samples were collected from symptomatic individuals presenting for evaluation in Atlanta, GA, in January 2022. Longitudinal samples were collected from a family cohort following COVID-19 exposure to describe detection of viral targets over the course of infection. Results: SARS-CoV-2 RNA and nucleocapsid antigen measurements demonstrated a nares-predominant phenotype in a familial cohort. A dominant location for SARS-CoV-2 was not found among cohort of 54 individuals. Positive percent agreement for virus detection in MT, OP and saliva specimens were 66.7 [54.1-79.2], 82.2 [71.1-93.4], and 72.5 [60.3-84.8] by RT-PCR, respectively, and 46.2 [32.6-59.7], 51.2 [36.2-66.1], and 72.0 [59.6-84.4] by ultrasensitive antigen assay. The composite of positive MT or OP assay was not significantly different than either alone for both RT-PCR and antigen assay (PPA 86.7 [76.7-96.6] and 59.5 [44.7-74.4], respectively). Conclusions: Our data suggest that SARS-CoV-2 nucleocapsid and RNA exhibited similar kinetics and diagnostic yield in three upper respiratory sample types across the duration of symptomatic disease. Collection of OP or combined nasal and OP samples does not appear to increase sensitivity versus validated nasal sampling for rapid detection of viral antigen


Subject(s)
COVID-19
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1322411.v1

ABSTRACT

Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of hACE-2 binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using vaccine and delta variant viral strains showed strong correlation with cell-based pseudovirus and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta variant resistance to neutralization in samples with paired vaccine and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.23.22269354

ABSTRACT

BackgroundReliable detection of SARS-CoV-2 infection is essential for diagnosis and treatment of disease as well as infection control and prevention during the ongoing COVID-19 pandemic. Existing nucleic acid tests do not reliably distinguish acute from resolved infection, as residual RNA is frequently detected in the absence of replication-competent virus. We hypothesized that viral nucleocapsid in serum or plasma may be a specific biomarker of acute infection that could enhance isolation and treatment strategies at an individualized level. MethodsSamples were obtained from a retrospective serological survey using a convenience sampling method from adult inpatient and outpatient encounters from January through March 2021. Samples were categorized along a timeline of infection (e.g. acute, late presenting, convalescent) based on timing of available SARS-CoV-2 testing and symptomatology. Nucleocapsid was quantified by digital immunoassay on the Quanterix HD-X platform. ResultsIn a large sample of 1860 specimens from 1607 patients, the highest level and frequency of antigenemia were observed in samples obtained during acute SARS-CoV-2 infection. Levels of antigenemia were highest in samples from seronegative individuals and in those with more severe disease. Using ROC analysis, we found that antigenemia exhibited up to 85.8% sensitivity and 98.6% specificity as a biomarker for acute COVID-19. ConclusionsNucleocapsid antigenemia is a sensitive and specific biomarker for acute SARS-CoV-2 infection and may aid in individualized assessment of SARS-CoV-2 infection resolution or persistence, although interpretation is limited by absence of a diagnostic gold standard for active infection.


Subject(s)
COVID-19 , Acute Disease , Huntington Disease
SELECTION OF CITATIONS
SEARCH DETAIL